My favorite R package
my_favorite_r_package.qmd
and the bibliography file data_literacy.bib
from CanvasCtrl + Enter
to run current line of code (any cursor position)Ctrl + Enter
to run current line of code (any cursor position)[1] NA
[1] NA
[1] 6
[1] 2 3 4 NA
[1] 3 4 5 NA
[1] 3 4 5 NA
[1] 0.2222222
[1] 0.2222222
[1] 1
[1] 2 3 NA
[1] 2 3
[1] 1 3 NA
y x
[1,] 1 -0.1264538
[2,] 2 1.1836433
[3,] 3 0.6643714
[4,] NA NA
[1] FALSE FALSE TRUE NA
[1] FALSE FALSE TRUE NA
[1] FALSE TRUE TRUE NA
[1] 2 3 NA
[1] "Current y value is: 1"
[1] "Current y value is: 2"
[1] "Current y value is: 3"
[1] "Current y value is: NA"
## 'seq_along' returns a vector which indexes the argument
for (i in seq_along(y)) {
print(paste("Current y value is:", y[i]))
}
[1] "Current y value is: 1"
[1] "Current y value is: 2"
[1] "Current y value is: 3"
[1] "Current y value is: NA"
## set.seed guarantees the same random numbers every time
set.seed(1)
total <- 0
while (total < 1) {
## runif generates random numbers between 0 and 1
total <- total + runif(1)
print(paste("Current total value is:", total))
}
[1] "Current total value is: 0.2655086631421"
[1] "Current total value is: 0.63763256277889"
[1] "Current total value is: 1.21048592613079"
[1] 1 2 3
[1] 10 9 8 7 6 5 4 3
[1] 3 5 7 9 11
z <- -2:3
for (x in z) {
print(paste("x =", x))
if (x > 0) {
print("x is positive")
} else if (x > 2) {
print("x is greater than 2")
} else if (x < 0) {
print("x is negative")
} else if (x == 0) {
print("x is zero")
}
}
[1] "x = -2"
[1] "x is negative"
[1] "x = -1"
[1] "x is negative"
[1] "x = 0"
[1] "x is zero"
[1] "x = 1"
[1] "x is positive"
[1] "x = 2"
[1] "x is positive"
[1] "x = 3"
[1] "x is positive"
[1] -2 -1 0
[1] 0 1 2 3
[1] -2 -1 1 2 3
[1] 0 1 2 3
Write your own function
a
and b
a
and b
have the same number of elements (see ?length
)
NA
a
and b
and check which vector’s element is larger (or if they are equal)a
is larger print the index of the elemnt and “a larger”b
is larger print the index of the elemnt and “b larger”a is: 1 2 3
b is: 1 2 3 4
Result:
[1] NA
a is: 1 2 3
b is: 0 2 4
Result:
[1] "1 a larger"
[1] "2 equal"
[1] "3 b larger"
x y z
1 -1 3 a
2 0 2 b
3 1 1 <NA>
[1] "data.frame"
[1] -1 0 1
[1] 2 2 2
rsum rdiff
1 2 -4
2 2 -2
3 2 0
'data.frame': 3 obs. of 3 variables:
$ x: int -1 0 1
$ y: int 3 2 1
$ z: chr "a" "b" NA
x y z
Min. :-1.0 Min. :1.0 Length:3
1st Qu.:-0.5 1st Qu.:1.5 Class :character
Median : 0.0 Median :2.0 Mode :character
Mean : 0.0 Mean :2.0
3rd Qu.: 0.5 3rd Qu.:2.5
Max. : 1.0 Max. :3.0
x y z
1 -1 3 a
2 0 2 b
3 1 1 <NA>
x y z a
1 -1 3 a -2
2 0 2 b 0
3 1 1 <NA> 2
x y z a b
1 -1 3 a -2 one
2 0 2 b 0 two
3 1 1 <NA> 2 three
y z a b
1 3 a -2 one
2 2 b 0 two
3 1 <NA> 2 three
y z a b
1 3 a NaN one
2 2 b -Inf two
3 1 <NA> 0.6931472 three
y z a b
1 3 a 0.0000000 one
2 2 b -Inf TWO!
3 1 c 0.6931472 three
Generate your own data
rnorm
, runif
, and ifelse
data.frame
with 10 rows and variables x
, generated using runif
and y
, generated using rnorm
z
which takes the value 1
if x
is larger than y
and 0
otherwisedata.frame
that holds the rows of the original one for which z == 1
is TRUE
.z
from the second data.frame
data.frame
when x
and y
have a differnent number of elements?penguins_raw
data set in multiple file formats# A tibble: 2 × 18
...1 studyName `Sample Number` Species Region Island Stage `Individual ID`
<chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 # this … <NA> NA <NA> <NA> <NA> <NA> <NA>
2 1 PAL0708 1 Adelie… Anvers Torge… Adul… N1A1
# ℹ 10 more variables: `Clutch Completion` <chr>, `Date Egg` <date>,
# `Culmen Length (mm)` <dbl>, `Culmen Depth (mm)` <dbl>,
# `Flipper Length (mm)` <dbl>, `Body Mass (g)` <dbl>, Sex <chr>,
# `Delta 15 N (o/oo)` <dbl>, `Delta 13 C (o/oo)` <dbl>, Comments <chr>
Fix the data
penguins_raw.csv
file is a commentreadr::read_csv
function (?readr::read_csv
)## CSV
penguins_raw <- readr::read_csv(
"data/penguins/penguins_raw.csv",
comment = "#")
head(penguins_raw, 2)
# A tibble: 2 × 18
...1 studyName `Sample Number` Species Region Island Stage `Individual ID`
<dbl> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 1 PAL0708 1 Adelie Pe… Anvers Torge… Adul… N1A1
2 2 PAL0708 2 Adelie Pe… Anvers Torge… Adul… N1A2
# ℹ 10 more variables: `Clutch Completion` <chr>, `Date Egg` <date>,
# `Culmen Length (mm)` <dbl>, `Culmen Depth (mm)` <dbl>,
# `Flipper Length (mm)` <dbl>, `Body Mass (g)` <dbl>, Sex <chr>,
# `Delta 15 N (o/oo)` <dbl>, `Delta 13 C (o/oo)` <dbl>, Comments <chr>
# A tibble: 1 × 1
...1
<dbl>
1 1
spc_tbl_ [344 × 18] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ ...1 : num [1:344] 1 2 3 4 5 6 7 8 9 10 ...
$ studyName : chr [1:344] "PAL0708" "PAL0708" "PAL0708" "PAL0708" ...
$ Sample Number : num [1:344] 1 2 3 4 5 6 7 8 9 10 ...
$ Species : chr [1:344] "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" ...
$ Region : chr [1:344] "Anvers" "Anvers" "Anvers" "Anvers" ...
$ Island : chr [1:344] "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
$ Stage : chr [1:344] "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" ...
$ Individual ID : chr [1:344] "N1A1" "N1A2" "N2A1" "N2A2" ...
$ Clutch Completion : chr [1:344] "Yes" "Yes" "Yes" "Yes" ...
$ Date Egg : Date[1:344], format: "2007-11-11" "2007-11-11" ...
$ Culmen Length (mm) : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ Culmen Depth (mm) : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ Flipper Length (mm): num [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ Body Mass (g) : num [1:344] 3750 3800 3250 NA 3450 ...
$ Sex : chr [1:344] "MALE" "FEMALE" "FEMALE" NA ...
$ Delta 15 N (o/oo) : num [1:344] NA 8.95 8.37 NA 8.77 ...
$ Delta 13 C (o/oo) : num [1:344] NA -24.7 -25.3 NA -25.3 ...
$ Comments : chr [1:344] "Not enough blood for isotopes." NA NA "Adult not sampled." ...
- attr(*, "spec")=
.. cols(
.. ...1 = col_double(),
.. studyName = col_character(),
.. `Sample Number` = col_double(),
.. Species = col_character(),
.. Region = col_character(),
.. Island = col_character(),
.. Stage = col_character(),
.. `Individual ID` = col_character(),
.. `Clutch Completion` = col_character(),
.. `Date Egg` = col_date(format = ""),
.. `Culmen Length (mm)` = col_double(),
.. `Culmen Depth (mm)` = col_double(),
.. `Flipper Length (mm)` = col_double(),
.. `Body Mass (g)` = col_double(),
.. Sex = col_character(),
.. `Delta 15 N (o/oo)` = col_double(),
.. `Delta 13 C (o/oo)` = col_double(),
.. Comments = col_character()
.. )
- attr(*, "problems")=<externalptr>
readxl
package provides functions for reading Excel files# A tibble: 2 × 18
...1 studyName `Sample Number` Species Region Island Stage `Individual ID`
<chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 1 PAL0708 1 Adelie Pe… Anvers Torge… Adul… N1A1
2 2 PAL0708 2 Adelie Pe… Anvers Torge… Adul… N1A2
# ℹ 10 more variables: `Clutch Completion` <chr>, `Date Egg` <dttm>,
# `Culmen Length (mm)` <dbl>, `Culmen Depth (mm)` <dbl>,
# `Flipper Length (mm)` <dbl>, `Body Mass (g)` <dbl>, Sex <chr>,
# `Delta 15 N (o/oo)` <dbl>, `Delta 13 C (o/oo)` <dbl>, Comments <chr>
## Read a subset
penguins_subset <- readxl::read_excel("data/penguins/penguins_raw.xlsx", sheet = "Sheet1", range = "B1:O345")
head(penguins_subset, 2)
# A tibble: 2 × 14
studyName `Sample Number` Species Region Island Stage `Individual ID`
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 PAL0708 1 Adelie Penguin … Anvers Torge… Adul… N1A1
2 PAL0708 2 Adelie Penguin … Anvers Torge… Adul… N1A2
# ℹ 7 more variables: `Clutch Completion` <chr>, `Date Egg` <dttm>,
# `Culmen Length (mm)` <dbl>, `Culmen Depth (mm)` <dbl>,
# `Flipper Length (mm)` <dbl>, `Body Mass (g)` <dbl>, Sex <chr>
haven
package provides functions for reading SPSS, Stata, and SAS files# A tibble: 2 × 17
study_name sample_number species region island stage individual_id
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 PAL0708 1 Adelie Penguin (Py… Anvers Torge… Adul… N1A1
2 PAL0708 2 Adelie Penguin (Py… Anvers Torge… Adul… N1A2
# ℹ 10 more variables: clutch_completion <chr>, date_egg <date>,
# culmen_length_mm <dbl>, culmen_depth_mm <dbl>, flipper_length_mm <dbl>,
# body_mass_g <dbl>, sex <chr>, delta_15_n_o_oo <dbl>, delta_13_c_o_oo <dbl>,
# comments <chr>
arrow
packagearrow
package provides functions for reading Parquet and Feather filesThe major benefits of object storage are the virtually unlimited scalability and the lower cost of storing large volumes of data for use cases such as data lakes, cloud native applications, analytics, log files, and machine learning (ML). 1
parquet
for large files and long term storage
feather
for optimized reading and short term storage
arrow
packagepenguins_raw <- arrow::read_parquet("data/penguins/penguins_raw.parquet")
penguins_raw <- arrow::read_feather("data/penguins/penguins_raw.feather")
head(penguins_raw, 2)
# A tibble: 2 × 17
studyName `Sample Number` Species Region Island Stage `Individual ID`
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 PAL0708 1 Adelie Penguin … Anvers Torge… Adul… N1A1
2 PAL0708 2 Adelie Penguin … Anvers Torge… Adul… N1A2
# ℹ 10 more variables: `Clutch Completion` <chr>, `Date Egg` <date>,
# `Culmen Length (mm)` <dbl>, `Culmen Depth (mm)` <dbl>,
# `Flipper Length (mm)` <dbl>, `Body Mass (g)` <dbl>, Sex <chr>,
# `Delta 15 N (o/oo)` <dbl>, `Delta 13 C (o/oo)` <dbl>, Comments <chr>
penguin_species_island <- arrow::read_parquet('data/penguins/penguin_species_nested.parquet')
head(penguin_species_island, 2)
# A tibble: 2 × 2
Island data
<chr> <list<tbl_df<Species:character>>>
1 Torgersen [52 × 1]
2 Biscoe [168 × 1]
# A tibble: 2 × 2
Island Species
<chr> <chr>
1 Torgersen Adelie Penguin (Pygoscelis adeliae)
2 Torgersen Adelie Penguin (Pygoscelis adeliae)
library(microbenchmark)
microbenchmark(
csv = readr::read_csv("data/penguins/penguins_raw.csv",
show_col_types = FALSE, name_repair = 'minimal'),
parquet = arrow::read_parquet("data/penguins/penguins_raw.parquet"),
feather = arrow::read_feather("data/penguins/penguins_raw.feather")
)
Unit: milliseconds
expr min lq mean median uq max neval cld
csv 7.774953 8.164555 8.585466 8.349117 8.586773 11.624443 100 a
parquet 1.783049 1.985671 2.090328 2.074333 2.151618 4.407172 100 b
feather 1.347547 1.463064 1.639503 1.536208 1.606196 4.417750 100 c
The most important types of data are:
Data type | Description |
---|---|
Numeric | Approximations of the real numbers, \(\normalsize\mathbb{R}\) (e.g., mileage a car gets: 23.6, 20.9, etc.) |
Integer | Whole numbers, \(\normalsize\mathbb{Z}\) (e.g., number of sales: 7, 0, 120, 63, etc.) |
Character | Text data (strings, e.g., product names) |
Factor | Categorical data for classification (e.g., product groups) |
Logical | TRUE, FALSE |
Date | Date variables (e.g., sales dates: 21-06-2015, 06-21-15, 21-Jun-2015, etc.) |
Variables can be converted from one type to another using the appropriate functions (e.g., as.numeric()
, as.integer()
, as.character()
, as.factor()
, as.logical()
, as.Date()
).
tibble [344 × 17] (S3: tbl_df/tbl/data.frame)
$ studyName : chr [1:344] "PAL0708" "PAL0708" "PAL0708" "PAL0708" ...
$ Sample Number : num [1:344] 1 2 3 4 5 6 7 8 9 10 ...
$ Species : chr [1:344] "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" ...
$ Region : chr [1:344] "Anvers" "Anvers" "Anvers" "Anvers" ...
$ Island : chr [1:344] "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
$ Stage : chr [1:344] "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" ...
$ Individual ID : chr [1:344] "N1A1" "N1A2" "N2A1" "N2A2" ...
$ Clutch Completion : chr [1:344] "Yes" "Yes" "Yes" "Yes" ...
$ Date Egg : Date[1:344], format: "2007-11-11" "2007-11-11" ...
$ Culmen Length (mm) : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ Culmen Depth (mm) : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ Flipper Length (mm): num [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ Body Mass (g) : num [1:344] 3750 3800 3250 NA 3450 ...
$ Sex : chr [1:344] "MALE" "FEMALE" "FEMALE" NA ...
$ Delta 15 N (o/oo) : num [1:344] NA 8.95 8.37 NA 8.77 ...
$ Delta 13 C (o/oo) : num [1:344] NA -24.7 -25.3 NA -25.3 ...
$ Comments : chr [1:344] "Not enough blood for isotopes." NA NA "Adult not sampled." ...
- attr(*, "spec")=
.. cols(
.. studyName = col_character(),
.. `Sample Number` = col_double(),
.. Species = col_character(),
.. Region = col_character(),
.. Island = col_character(),
.. Stage = col_character(),
.. `Individual ID` = col_character(),
.. `Clutch Completion` = col_character(),
.. `Date Egg` = col_date(format = ""),
.. `Culmen Length (mm)` = col_double(),
.. `Culmen Depth (mm)` = col_double(),
.. `Flipper Length (mm)` = col_double(),
.. `Body Mass (g)` = col_double(),
.. Sex = col_character(),
.. `Delta 15 N (o/oo)` = col_double(),
.. `Delta 13 C (o/oo)` = col_double(),
.. Comments = col_character()
.. )
tibble [344 × 17] (S3: tbl_df/tbl/data.frame)
$ study_name : chr [1:344] "PAL0708" "PAL0708" "PAL0708" "PAL0708" ...
$ sample_number : num [1:344] 1 2 3 4 5 6 7 8 9 10 ...
$ species : chr [1:344] "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" ...
$ region : chr [1:344] "Anvers" "Anvers" "Anvers" "Anvers" ...
$ island : chr [1:344] "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
$ stage : chr [1:344] "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" ...
$ individual_id : chr [1:344] "N1A1" "N1A2" "N2A1" "N2A2" ...
$ clutch_completion: chr [1:344] "Yes" "Yes" "Yes" "Yes" ...
$ date_egg : Date[1:344], format: "2007-11-11" "2007-11-11" ...
$ culmen_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ culmen_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: num [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : num [1:344] 3750 3800 3250 NA 3450 ...
$ sex : chr [1:344] "MALE" "FEMALE" "FEMALE" NA ...
$ delta_15_n_o_oo : num [1:344] NA 8.95 8.37 NA 8.77 ...
$ delta_13_c_o_oo : num [1:344] NA -24.7 -25.3 NA -25.3 ...
$ comments : chr [1:344] "Not enough blood for isotopes." NA NA "Adult not sampled." ...
- attr(*, "spec")=
.. cols(
.. studyName = col_character(),
.. `Sample Number` = col_double(),
.. Species = col_character(),
.. Region = col_character(),
.. Island = col_character(),
.. Stage = col_character(),
.. `Individual ID` = col_character(),
.. `Clutch Completion` = col_character(),
.. `Date Egg` = col_date(format = ""),
.. `Culmen Length (mm)` = col_double(),
.. `Culmen Depth (mm)` = col_double(),
.. `Flipper Length (mm)` = col_double(),
.. `Body Mass (g)` = col_double(),
.. Sex = col_character(),
.. `Delta 15 N (o/oo)` = col_double(),
.. `Delta 13 C (o/oo)` = col_double(),
.. Comments = col_character()
.. )
|>
is the “pipe” operator
# A tibble: 2 × 17
study_name sample_number species region island stage individual_id
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 PAL0708 1 Adelie Penguin (Py… Anvers Torge… Adul… N1A1
2 PAL0708 2 Adelie Penguin (Py… Anvers Torge… Adul… N1A2
# ℹ 10 more variables: clutch_completion <chr>, date_egg <date>,
# culmen_length_mm <dbl>, culmen_depth_mm <dbl>, flipper_length_mm <dbl>,
# body_mass_g <dbl>, sex <chr>, delta_15_n_o_oo <dbl>, delta_13_c_o_oo <dbl>,
# comments <chr>
# A tibble: 2 × 17
study_name sample_number species region island stage individual_id
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 PAL0708 1 Adelie Penguin (Py… Anvers Torge… Adul… N1A1
2 PAL0708 2 Adelie Penguin (Py… Anvers Torge… Adul… N1A2
# ℹ 10 more variables: clutch_completion <chr>, date_egg <date>,
# culmen_length_mm <dbl>, culmen_depth_mm <dbl>, flipper_length_mm <dbl>,
# body_mass_g <dbl>, sex <chr>, delta_15_n_o_oo <dbl>, delta_13_c_o_oo <dbl>,
# comments <chr>
dplyr
provides function for data.frame
manipulationstringr
provides functions to manipulate strings (characters)mutate
takes each row and applies a function to create a new (or overwrite a) column
select
selects columnslibrary(dplyr)
library(stringr)
penguins_subset <- penguins |>
mutate(
species = str_split(species, " ", n = 2, simplify = TRUE)[,1],
is_adult = str_detect(str_to_lower(stage), "adult"),
is_female = str_detect(str_to_lower(sex), "female"),
sex = str_to_lower(sex)) |>
select(species, island, sex, is_adult, culmen_length_mm, culmen_depth_mm, is_female)
penguins_subset |> head(2)
# A tibble: 2 × 7
species island sex is_adult culmen_length_mm culmen_depth_mm is_female
<chr> <chr> <chr> <lgl> <dbl> <dbl> <lgl>
1 Adelie Torgersen male TRUE 39.1 18.7 FALSE
2 Adelie Torgersen female TRUE 39.5 17.4 TRUE
#penguins_subset <-
penguins_subset <- penguins_subset |>
mutate(
across(starts_with('culmen'), \(x) x / 10),
across(species:sex, as.factor),
across(c('is_adult', 'is_female'), as.numeric)
) |>
mutate_if(is.numeric,
list(scaled = \(x) (x - mean(x, na.rm=TRUE)) / sd(x, na.rm=TRUE))
) |>
rename_with(
\(name) str_replace(name, "mm", "cm"),
starts_with('culmen'))
penguins_subset |> select(-starts_with('is')) |> str()
tibble [344 × 6] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ culmen_length_cm : num [1:344] 3.91 3.95 4.03 NA 3.67 3.93 3.89 3.92 3.41 4.2 ...
$ culmen_depth_cm : num [1:344] 1.87 1.74 1.8 NA 1.93 2.06 1.78 1.96 1.81 2.02 ...
$ culmen_length_cm_scaled: num [1:344] -0.883 -0.81 -0.663 NA -1.323 ...
$ culmen_depth_cm_scaled : num [1:344] 0.784 0.126 0.43 NA 1.088 ...
- attr(*, "spec")=
.. cols(
.. studyName = col_character(),
.. `Sample Number` = col_double(),
.. Species = col_character(),
.. Region = col_character(),
.. Island = col_character(),
.. Stage = col_character(),
.. `Individual ID` = col_character(),
.. `Clutch Completion` = col_character(),
.. `Date Egg` = col_date(format = ""),
.. `Culmen Length (mm)` = col_double(),
.. `Culmen Depth (mm)` = col_double(),
.. `Flipper Length (mm)` = col_double(),
.. `Body Mass (g)` = col_double(),
.. Sex = col_character(),
.. `Delta 15 N (o/oo)` = col_double(),
.. `Delta 13 C (o/oo)` = col_double(),
.. Comments = col_character()
.. )
\(name) str_replace(name, "mm", "cm")
[1] "acmm"
\(\rightarrow\) closure
s are functions
function (string, pattern, replacement)
{
if (!missing(replacement) && is_replacement_fun(replacement)) {
replacement <- as_function(replacement)
return(str_transform(string, pattern, replacement))
}
check_lengths(string, pattern, replacement)
switch(type(pattern), empty = no_empty(), bound = no_boundary(),
fixed = stri_replace_first_fixed(string, pattern, replacement,
opts_fixed = opts(pattern)), coll = stri_replace_first_coll(string,
pattern, replacement, opts_collator = opts(pattern)),
regex = stri_replace_first_regex(string, pattern, fix_replacement(replacement),
opts_regex = opts(pattern)))
}
<bytecode: 0x10ec684a8>
<environment: namespace:stringr>
TRUE
rows remain# A tibble: 1 × 1
avg_weight
<dbl>
1 4202.
penguins_summary <- penguins_subset |>
drop_na(culmen_length_cm) |>
group_by(species, sex) |>
summarize(avg_clength = mean(culmen_length_cm))
penguins_summary
# A tibble: 8 × 3
# Groups: species [3]
species sex avg_clength
<fct> <fct> <dbl>
1 Adelie female 3.73
2 Adelie male 4.04
3 Adelie <NA> 3.78
4 Chinstrap female 4.66
5 Chinstrap male 5.11
6 Gentoo female 4.56
7 Gentoo male 4.95
8 Gentoo <NA> 4.56
# A tibble: 3 × 4
sex Adelie Chinstrap Gentoo
<fct> <dbl> <dbl> <dbl>
1 female 3.73 4.66 4.56
2 male 4.04 5.11 4.95
3 <NA> 3.78 NA 4.56
penguins_wide <- penguins_subset |>
drop_na(culmen_length_cm) |>
select(culmen_length_cm, species, sex) |>
pivot_wider(values_from = culmen_length_cm, names_from = species, values_fn = mean) |>
arrange(sex) |>
select(sex, Adelie, Chinstrap, Gentoo)
penguins_wide
# A tibble: 3 × 4
sex Adelie Chinstrap Gentoo
<fct> <dbl> <dbl> <dbl>
1 female 3.73 4.66 4.56
2 male 4.04 5.11 4.95
3 <NA> 3.78 NA 4.56
# A tibble: 9 × 3
sex species avg_clength
<fct> <chr> <dbl>
1 female Adelie 3.73
2 female Chinstrap 4.66
3 female Gentoo 4.56
4 male Adelie 4.04
5 male Chinstrap 5.11
6 male Gentoo 4.95
7 <NA> Adelie 3.78
8 <NA> Chinstrap NA
9 <NA> Gentoo 4.56
Become the Ornithologist
penguins_raw.feather
file?median
) body mass for each species on each island
Become the music manager
top10_charts.csv
in chart_data
?min
, ?max
)?slice_max
)top10_charts.csv
and Song metadata, trackID in top10_meta.csv
noahs-orders.csv
and productid, purchaseid in noahs-orders_items.csv
and customerid, customer metadata in noahs-customers.csv
join
scharts <- readr::read_csv("data/chart_data/top10_charts.csv")
songs <- readr::read_csv("data/chart_data/top10_meta.csv")
str(charts, give.attr=FALSE)
spc_tbl_ [7,320 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ trackID : chr [1:7320] "012iHyRvQQquWQGUTYvDxy" "017PF4Q3l4DBUiWoXk4OWT" "017PF4Q3l4DBUiWoXk4OWT" "017PF4Q3l4DBUiWoXk4OWT" ...
$ rank : num [1:7320] 7 6 7 7 7 8 9 9 10 10 ...
$ streams : num [1:7320] 26234 4276985 3688979 3255639 3478044 ...
$ day : Date[1:7320], format: "2020-08-14" "2020-03-27" ...
$ dayNumber: num [1:7320] 1318 1178 1179 1180 1181 ...
$ region : chr [1:7320] "at" "global" "global" "global" ...
$ isrc : chr [1:7320] "DEUM72004523" "GBAHT1901303" "GBAHT1901303" "GBAHT1901303" ...
spc_tbl_ [347 × 29] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ trackID : chr [1:347] "012iHyRvQQquWQGUTYvDxy" "017PF4Q3l4DBUiWoXk4OWT" "01I9AEz658sQnQzCL3K3QG" "033if6Adj8fwBYsQzHOfQ8" ...
$ trackName : chr [1:347] "Fall Auf" "Break My Heart" "HOES UP G'S DOWN" "100k Cash" ...
$ artistName : chr [1:347] "Cro feat. badchieff" "Dua Lipa" "Shirin David" "Capital Bra feat. Samra" ...
$ artistIds : chr [1:347] "3utZ2yeQk0Z3BCOBWP7Vlu,6GoNVmYCl0yUm4pEp80vn6" "6M2wZ9GZgrQXHCFfjv46we" "0JBdTCGs111JKKYfLqOEBa" "4WZGDpNwrC0vNQyl9QzF7d,6h1s4i4XKIYv4ErDelLDN0" ...
$ isrc : chr [1:347] "DEUM72004523" "GBAHT1901303" "DECE72000379" "DECE72000176" ...
$ explicit : num [1:347] 0 0 1 0 0 0 0 1 0 0 ...
$ trackPopularity : num [1:347] 64 83 75 71 69 82 70 74 89 79 ...
$ primary_artistName : chr [1:347] "Cro" "Dua Lipa" "Shirin David" "Capital Bra" ...
$ primary_artistID : chr [1:347] "3utZ2yeQk0Z3BCOBWP7Vlu" "6M2wZ9GZgrQXHCFfjv46we" "0JBdTCGs111JKKYfLqOEBa" "4WZGDpNwrC0vNQyl9QzF7d" ...
$ artistIDs : chr [1:347] "3utZ2yeQk0Z3BCOBWP7Vlu,6GoNVmYCl0yUm4pEp80vn6" "6M2wZ9GZgrQXHCFfjv46we" "0JBdTCGs111JKKYfLqOEBa" "4WZGDpNwrC0vNQyl9QzF7d,6h1s4i4XKIYv4ErDelLDN0" ...
$ albumName : chr [1:347] "Fall Auf" "Future Nostalgia" "HOES UP G'S DOWN" "100k Cash" ...
$ albumID : chr [1:347] "1qdHQo41Vkkgs8HtMk5b96" "7fJJK56U9fHixgO0HQkhtI" "15Njx2PcwnNsI65fnbM7Pw" "5cqwoGrjFr3VKYZ9ZC0eL2" ...
$ available_markets : chr [1:347] "AD, AE, AL, AR, AT, AU, BA, BE, BG, BH, BO, BR, BY, CA, CH, CL, CO, CR, CY, CZ, DE, DK, DO, DZ, EC, EE, EG, ES,"| __truncated__ "AD, AE, AR, AU, BE, BG, BH, BO, BR, CA, CL, CO, CR, CY, CZ, DK, DO, DZ, EC, EE, EG, ES, FI, FR, GB, GR, GT, HK,"| __truncated__ "AD, AE, AR, AT, AU, BE, BG, BH, BO, BR, CA, CH, CL, CO, CR, CY, CZ, DE, DK, DO, DZ, EC, EE, EG, ES, FI, FR, GB,"| __truncated__ "AD, AE, AR, AT, AU, BE, BG, BH, BO, BR, CA, CH, CL, CO, CR, CY, CZ, DE, DK, DO, DZ, EC, EE, EG, ES, FI, FR, GB,"| __truncated__ ...
$ n_available_markets : num [1:347] 92 76 79 79 87 79 3 79 92 92 ...
$ releaseDate : Date[1:347], format: "2020-08-13" "2020-03-27" ...
$ releaseDate_precision: chr [1:347] "day" "day" "day" "day" ...
$ danceability : num [1:347] 0.5 0.73 0.73 0.701 0.84 0.795 0.814 0.774 0.641 0.571 ...
$ energy : num [1:347] 0.743 0.729 0.777 0.714 0.648 0.607 0.794 0.805 0.324 0.693 ...
$ key : num [1:347] 2 4 1 10 10 7 7 11 11 6 ...
$ loudness : num [1:347] -6.65 -3.43 -6.38 -5.91 -5.54 ...
$ mode : num [1:347] 1 0 0 1 0 1 1 0 1 0 ...
$ speechiness : num [1:347] 0.0373 0.0886 0.29 0.524 0.0489 0.23 0.0887 0.302 0.0299 0.0545 ...
$ acousticness : num [1:347] 0.307 0.167 0.0455 0.289 0.101 0.128 0.119 0.0509 0.698 0.0054 ...
$ instrumentalness : num [1:347] 0.00 1.39e-06 1.10e-03 0.00 1.00e-04 1.90e-01 9.00e-04 0.00 0.00 0.00 ...
$ liveness : num [1:347] 0.133 0.349 0.0759 0.0883 0.0996 0.111 0.348 0.149 0.328 0.173 ...
$ valence : num [1:347] 0.332 0.467 0.578 0.604 0.431 0.25 0.647 0.261 0.273 0.393 ...
$ tempo : num [1:347] 166.3 113 177.9 86.9 103 ...
$ duration_ms : num [1:347] 191827 221820 130307 173353 124690 ...
$ time_signature : num [1:347] 4 4 4 4 4 4 4 4 4 4 ...
left_join
keeps all rows that have an id in the left datasetinner_join
only keeps rows with ids in both datasetsdata1 <- data.frame(group = c('a', 'a', 'b','c'), value = c(1,2,3,4)) # missing group 'd'
data2 <- data.frame(group2 = c('a', 'c', 'd'), value2 = factor(c("abc", "def", "ghi"))) # missing group 'b'
left_join(data1, data2, by = c("group" = "group2"))
group value value2
1 a 1 abc
2 a 2 abc
3 b 3 <NA>
4 c 4 def
group value value2
1 a 1 abc
2 a 2 abc
3 c 4 def
4 d NA ghi
group value value2
1 a 1 abc
2 a 2 abc
3 c 4 def
full_join
returns all rows from both datasetssemi_join
returns only the columns of the left dataset and filters rows with id in the right datasetanti_join
keeps only rows that do not have an id in the right table group value value2
1 a 1 abc
2 a 2 abc
3 b 3 <NA>
4 c 4 def
5 d NA ghi
group value
1 a 1
2 a 2
3 c 4
group value
1 a 1
2 a 2
3 c 4
group value
1 b 3
Links
Bibliography