Marketing Science Conference 2024
WU-Vienna
WU-Vienna
Harvard University
June 27, 2024
3 Parts
with Pascal Güntürkün (WU Vienna), Sinika Studte (HSBA Hamburg School of Business Administration), Michel Clement (University of Hamburg), Eva-Maria Merz (VU Amsterdam; Sanquin Research), Elisabeth Huis in ’t Veld (Tilburg University), Jonathan Tan (Nanyang Technical University), Eamonn Ferguson (The University of Nottingham; Cambridge University)
Switching to opt-out organ donation
For each group \(g\) estimate two models:
General setup
Gaussian RW State Space model (Cadonna, Frühwirth-Schnatter, and Knaus 2020) \[ \begin{aligned} \beta_{g,t} &= \beta_{g,t-1} + w_{g,t}, \quad w_{g,t} \sim N_4(\mathbf{0}, \mathbf{Q_{g}}) \\ y_{g,t} &= X_{g,t} \beta_{g,t} + \epsilon_{g,t}, \quad \epsilon_{g,t} \sim N_p(\mathbf{0}, Diag(\sigma^2_g)) \\ \mathbf{Q_g} &= Diag(\theta_{1,g}, \dots, \theta_{4,g}) \end{aligned} \]
Non-centered paramterization (Frühwirth-Schnatter and Wagner 2010)
\[ \begin{aligned} \tilde{\beta}_{g,t} &= \tilde{\beta}_{g,t-1} + \tilde{w}_{g,t}, \quad \tilde{w}_{g,t} \sim N_4(\mathbf{0}, \mathbf{I})\\ y_{g,t} &= X_{g,t} \beta_g + X_{g,t} Diag(\sqrt{\theta_{g, 1}}, \dots, \sqrt{\theta_{g,4}}) \tilde \beta_{g,t} + \epsilon_{g,t}, \quad \epsilon_{g,t} \sim N_p(0, Diag(\sigma^2_g)) \end{aligned} \]
Tripple Gamma (Cadonna, Frühwirth-Schnatter, and Knaus 2020) priors for \(\sqrt{\theta_{g,j}}\) and \(\beta_{g,j}\)1
\[ \sqrt{\theta}_j\left|\xi_j^2 \sim N\left(0, \xi_j^2\right),\\ \xi_j^2\right| a^{\xi}, \kappa_j^2 \sim G\left(a^{\xi}, \frac{a^{\xi} \kappa_j^2}{2}\right),\\ \kappa_j^2 \mid c^{\xi}, \kappa_B^2 \sim G \left(c^{\xi}, \frac{c^{\xi}}{\kappa_B^2}\right) \]
\[ \beta_j\left|\phi_j^2 \sim N\left(0, \phi_j^2\right), \\ \phi_j^2\right| a^\phi, \lambda_j^2 \sim G\left(a^\phi, \frac{a^\phi \lambda_j^2}{2}\right), \\ \lambda_j^2 \mid c^\phi, \lambda_B^2 \sim G\left(c^\phi, \frac{c^\phi}{\lambda_B^2}\right) \]
Global shrinkage (\(\lambda_B^2,\ \kappa_B^2\)) also as in (Cadonna, Frühwirth-Schnatter, and Knaus 2020) s.t.
Corrected by implied violation based on posterior-median of pre-treatment model (similar to Rambachan and Roth 2023)
Any questions?
Group | t = 1 | t = 2 |
---|---|---|
\(g = 2\) | \(Y_{i,1}(0)\) | \(Y_{i, 2}(1)\) |
\(g = \infty\) | \(Y_{j,1}(0)\) | \(Y_{j, 2}(0)\) |
\[ \begin{aligned} \bar Y_{g=2, 2} - \bar Y_{g=2, 1} &= \delta_{g=2} + \tau_{g=2} \\ \bar Y_{g=2, 2} - \bar Y_{g=2, 1} &= \bar Y_{g=\infty, 2} - \bar Y_{g=\infty, 1} + \tau_{g=2} \\ \left[\bar Y_{g=2, 2} - \bar Y_{g=2, 1}\right] - \left[\bar Y_{g=\infty, 2} - \bar Y_{g=\infty, 1}\right] &= \tau_{g=2} \end{aligned} \]